Is Deep Learning Useful For Disaster Management?

Is Deep Learning Useful For Disaster Management?

Naveen Joshi 03/03/2022
Is Deep Learning Useful For Disaster Management?

Natural or human-made disasters have a devastating effect on the local population as well as the environment.


Deep learning (DL) in disaster management helps in mitigating such effects.

DL is a technology that needs no introduction. The technology has left everyone astonished due to its path-breaking innovation across industries. But the application of technology to environment is a different ball game altogether. Disasters - natural or human-made - result in tremendous loss of life and property. According to a report on global disasters:

  • In the last 20 years, we lost 1.35 estimated million lives to disasters

  • For post-disaster recovery, we’ve lose approximately 300 U.S. dollars per year

Such substantial loss of life and property makes us question the current disaster management model. What’s not working well with it? Why isn’t it providing optimized results? The failure of these models to forecast the occurrence of disasters and to manage the post-disaster recovery has created the necessity to implement an advanced technology like DL in disaster management.

Challenges with the Current Disaster Management Model


The current disaster management approach involves satellites and drones to gather data from areas are prone to disasters. But how effective are the results of this approach? The current disaster model fails to:

  • offer data in real time,
  • gather data from multiple sites at the same time, and
  • sugegst proactive steps for disaster prevention

Additionally, the current disaster management systems do not offer clear and crisp images of disaser prone regions. This is why, it’s high time experts implement DL in disaster management to overcome these current issues.

Deep Learning in Disaster Management


Data from multiple sources, such as weather reports, satellite images, disaster history, can be used to train a DL system. After the training, DL can foretell the occurrence of a disaster using a convolutional neural network. With insights drawn from thorough analysis, experts can predict the imminent occurrence of disasters, helping experts and people to follow a proactive approach and minimize the devastation otherwise expected. No one can pause or halt the occurrence of natural or human-made disasters. We can only take steps to reduce their impact as far as possible. By integrating DL applications with drones, experts can get real-time data on areas that are about to get hit by a disaster. Timely and sufficient measures can then be taken to save lives and property. Furthermore, drones can also track specific areas, such as forests and narrow geographical locations, so that special help can be extended to such difficult terrains. Gone are the days when only product-oriented, commercial fields planned to use DL. Today, DL is ready to show its potential in unconventional areas like disaster management.

Share this article

Leave your comments

Post comment as a guest

terms and condition.
  • No comments found

Share this article

Naveen Joshi

Tech Expert

Naveen is the Founder and CEO of Allerin, a software solutions provider that delivers innovative and agile solutions that enable to automate, inspire and impress. He is a seasoned professional with more than 20 years of experience, with extensive experience in customizing open source products for cost optimizations of large scale IT deployment. He is currently working on Internet of Things solutions with Big Data Analytics. Naveen completed his programming qualifications in various Indian institutes.


Latest Articles

View all
  • Science
  • Technology
  • Companies
  • Environment
  • Global Economy
  • Finance
  • Politics
  • Society
Cookies user prefences
We use cookies to ensure you to get the best experience on our website. If you decline the use of cookies, this website may not function as expected.
Accept all
Decline all
Read more
Tools used to analyze the data to measure the effectiveness of a website and to understand how it works.
Google Analytics