How Machine Learning Can Prevent Credit Card Fraud

How Machine Learning Can Prevent Credit Card Fraud

Naveen Joshi 31/05/2022
How Machine Learning Can Prevent Credit Card Fraud

Machine learning can reduce false positive and quickly detect credit card fraud.

Using traditional methods to detect instances of credit card fraud slows down the process of resolving such issues. The application of machine learning in banking promises to find quicker and accurate solutions for all kinds of financial institutions.

The advent of digitization in banking has introduced several cybersecurity-related issues in such finance-based organizations. For example, reported financial fraud had increased by 104% in the first quarter of 2020, compared to Q1 2019. One of the main types of financial fraud is credit card fraud, which involves hackers accessing an individual's card and illegally using it. While card-owners can call their banks and freeze the card on encountering this issue, preventing the possibility of such fraud must be the priority for banks and credit card companies. A guaranteed way to address this problem is by using machine learning for fraud detection. This application of machine learning in banking is yet another example of AI being used for finance-related purposes in organizations.

Scanning Purchase Patterns to Detect Fraud

Financial_Issues_AI_Can_Resolve.png

AI-based fraud detection systems closely scan the credit card statements of users continually. AI's advanced pattern and anomaly recognition come into play by detecting buying patterns that cannot be found with human eyes. For example, if a user doesn't particularly shop a lot online and suddenly—as per their card statement—starts doing so with some frequency, the system raises a red flag. Similarly, if a user suddenly begins making purchases from stores that are miles away from where they stay, a flag is raised. There are several such parameters. Additionally, the tools based on machine learning in banking can differentiate between a one-off purchase and multiple purchases following the same pattern. In this way, false positives are avoided in credit card fraud detection. Once the system raises red flags after scanning real-time purchases, credit card companies or banks can deploy their investigation team to look into the matter and take the appropriate action before any significant activity takes place with the card.

Using Machine Learning for Fraud Detection

The Denmark-based Danske Bank employs AI for credit card fraud detection. After implementing the technology for the purpose, the bank reduced the number of false positives in fraud detection by 60% and reported a 50% increase in the number of detected cases of fraud.

Banks and credit card companies walk a thin line during credit card fraud detection. They do not wish to incorrectly flag every transaction as fraudulent. At the same time, every case of credit card fraud must be caught immediately. Machine learning in banking is necessary to achieve both these objectives seamlessly.  

Share this article

Leave your comments

Post comment as a guest

0
terms and condition.
  • No comments found

Share this article

Naveen Joshi

Tech Expert

Naveen is the Founder and CEO of Allerin, a software solutions provider that delivers innovative and agile solutions that enable to automate, inspire and impress. He is a seasoned professional with more than 20 years of experience, with extensive experience in customizing open source products for cost optimizations of large scale IT deployment. He is currently working on Internet of Things solutions with Big Data Analytics. Naveen completed his programming qualifications in various Indian institutes.

   

Latest Articles

View all
  • Science
  • Technology
  • Companies
  • Environment
  • Global Economy
  • Finance
  • Politics
  • Society
Save
Cookies user prefences
We use cookies to ensure you to get the best experience on our website. If you decline the use of cookies, this website may not function as expected.
Accept all
Decline all
Read more
Analytics
Tools used to analyze the data to measure the effectiveness of a website and to understand how it works.
Google Analytics
Accept
Decline