You Might Want Artificial Intelligence Reading Your Next Mammogram

You Might Want Artificial Intelligence Reading Your Next Mammogram

John Nosta 11/10/2018 4

“You don’t have cancer.”

These are perhaps the most powerful and important four words a woman can hear after a breast-screening visit. X-ray based mammography is an effective screening tool for detecting cancer, but what many women may not know is that breast screening programs produce a high level of false positive results, particularly after multiple years of screening. In other words, women are informed they may have cancer when in fact they don’t. This is particularly true in the U.S., where each study is generally read by a single, expert radiologist. In Europe, two independent radiologists read each study.

Interpreting mammograms is a complex job. Even the most highly trained radiologists may struggle to confidently rule out the possibility of cancer in difficult cases. This frequently results in a large percentage of American women, up to 30% in some settings, being recalled or asked to return for further imaging studies or even a biopsy. In fact, after 10 years of annual screening, more than half of women will receive at least one false-positive recall.  Although the system is designed to improve accuracy, the high numbers of recalled patients in the U.S., most of whom do not have cancer, may lead to unnecessary anxiety, additional radiation exposure and invasive procedures for a lot of women. It also contributes to extra healthcare costs.

Artificial intelligence is a ubiquitous term in health tech that has gained both promise and suspicion. In radiology, AI is being investigated as a solution to enable radiologists to more efficiently and effectively improve cancer detection. But as is often the case with new technologies, marketing hype often exceeds the reality of what the solution can actually do.

In pre-publication data, Kheiron Medical Technologies, has developed the first deep learning-based software that surpasses the U.S. National Performance Benchmarks for Modern Screening Digital Mammography based on independent multi-center clinical trials. Initial data from over 5,000 patients, showed that AI-based analysis was as good as conventional physician interpretation.  Further, that analysis was confirmed by direct pathology or a two-year, cancer free period of time in this retrospective analysis. Kheiron is also the first UK-based company to receive European regulatory approval for an application of deep learning in radiology and is currently seeking FDA approval for its software.

It is our goal to build and deploy algorithms that have a meaningful positive impact on clinical pathways for the benefit of patients in real practice. This requires extensive evidence-gathering using the appropriate methodologies on very large, high quality and diverse datasets. Our initial study results are the first clinical validation of many planned studies in Europe and the US to assess our software’s real-world performance.

Dr Peter Kecskemethy, CEO Kheiron

Today, mammograms are analyzed by more than one process--and this in not without controversy. In the UK, mammograms are read by two radiologists. And in some instances, it's been suggested that these "readers" may even be mammographers who are technicians, not radiologists. In the U.S., mammograms are most frequently read by a single radiologist. The role of technology can certainly have value in augmenting any or all of these methodologies. From shifting the burden away from a busy clinician to empowering a technician, the emerging advantages of AI point to a key beneficiary—the patient.

A version of this article first appeared on Forbes.

About the Author

I am the Founder of NOSTALAB -- a leading digital health think tank providing business and marketing insights to help the life science industry navigate the complex aspects of innovation in the context of exponential change. I help define, dissect and deliberate global trends in digital health as an active participant working with clinicians, innovators and patients.

Follow me @JohnNosta for an enlightening and unexpected view of the future.

Share this article

Leave your comments

Post comment as a guest

terms and condition.
  • Elliott James

    Thanks to AI, doctors will have more time to focus on treating patients.

  • Phil Northam

    Artificial intelligence will decrease error rates by tenfold compared to previous technologies.

  • Scott Andrews

    Doctors will be able to concentrate their power of the hardest and most complicated cases, which are more suitable for a human mind.

  • John Yule

    I still think there are things humans will prove to do better than AI and machine-learning systems.

Share this article

John Nosta

Digital Health Expert

John is the #1 global influencer in digital health and generally regarded as one of the top global strategic and creative thinkers in this important and expanding area. He is also one the most popular speakers around the globe presenting his vibrant and insightful perspective on the future of health innovation. His focus is on guiding companies, NGOs, and governments through the dynamics of exponential change in the health / tech marketplaces. He is also a member of the Google Health Advisory Board, pens HEALTH CRITICAL for Forbes--a top global blog on health & technology and THE DIGITAL SELF for Psychology Today—a leading blog focused on the digital transformation of humanity. He is also on the faculty of Exponential Medicine. John has an established reputation as a vocal advocate for strategic thinking and creativity. He has built his career on the “science of advertising,” a process where strategy and creativity work together for superior marketing. He has also been recognized for his ability to translate difficult medical and scientific concepts into material that can be more easily communicated to consumers, clinicians and scientists. Additionally, John has distinguished himself as a scientific thinker. Earlier in his career, John was a research associate at Harvard Medical School and has co-authored several papers with global thought-leaders in the field of cardiovascular physiology with a focus on acute myocardial infarction, ventricular arrhythmias and sudden cardiac death.

Cookies user prefences
We use cookies to ensure you to get the best experience on our website. If you decline the use of cookies, this website may not function as expected.
Accept all
Decline all
Read more
Tools used to analyze the data to measure the effectiveness of a website and to understand how it works.
Google Analytics